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Abstract

We consider the d-dimensional Newton oscillator, which is invariant under
the group U (d), and construct a symmetry operator R which corresponds to
particle—antiparticle interchange.

PACS numbers: 0365, 0220

The development of the quantum inverse method and the study of solutions of the Yang—
Baxter equation are the origin of the concept of quantum groups and algebras [1,2]. It was
also found that these new mathematical structures have important applications in exactly
solvable statistical models [3] and in two-dimensional conformal field theories [4]. An
interesting realization of the quantum algebra SU,(2) in terms of a g-analogue of the usual
bosonic harmonic oscillator and the Jordan—Schwinger mapping [5-7] has led naturally to
the introduction of a g-deformed fermionic equivalent of the g-deformed bosonic oscillator
to construct the oscillator representation of the g-deformed superalgebras [8], quantum
exceptional algebras [9] and some g-deformed classical Lie algebras [10].

The multi-dimensional fermionic Newton oscillator is defined by the commutation
relations

ajay +qaga; =qN8jk
ajN = (N + 1a;
ajap +aaj =0
Jok=1,2,...,d

where a7 is the creation operator and a; is the annihilation operator of the ith fermion and N
is the total number operator in d dimensions. It enjoys the following properties:

ey

(1) For g = 1 it reduces to the usual d-dimensional fermion algebra.
(2) The usual fermionic operators a and a* satisfying

aa*+a*a =1
[N,a*]=a"

a?=0
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are equivalent to fermionic g-oscillators satisfying
aa* +qga*a = gV
[N,a*]=a"
a’* =0.

Furthermore, Jing and Xu proved that the well known g-deformed fermionic oscillator
given by

aa* +a*a = q"

aa* +q 'a*a=q7"

a*=a*=0

is nothing but the usual fermionic oscillator [11].
Although the fermionic Newton oscillator for d = 1 is isomorphic [11, 12] to the usual
fermionic oscillator, for d > 1 the ‘deformed’ total particle operator

N:Zajaijqu 2)
J

gives deformed integer eigenvalues.
(3) It is invariant under the U (d) group, which acts on the oscillators through

*

a; —>Oljk6lk a]

— ojray (3)

where i is a d x d unitary matrix. This property, which is also possessed by the d-
dimensional classical harmonic oscillator, justifies the name Newton. For the bosonic
version it can be shown that the deformation can be understood using the quantization of
the classical Newton equation [13].

The coherent states for the one-dimensional bosonic Newton oscillator were constructed
in [14]. The multi-dimensional bosonic version of this oscillator was derived in [13] using
the quantization of the harmonic oscillator through its Newton equation and its invariance
properties. A different multi-dimensional fermionic g-oscillator not invariant under U (d) has
been considered in [15].

Although the usual d-dimensional fermionic oscillator obeys the (particle—antiparticle)
symmetry a; <> a; and N <> d — N, the g-deformed oscillator does not. In this paper we
show that the algebra (1) can be extended such that the system has the symmetry

aj — b N—-d-N “@

where b; are ‘inverse’ lowering operators, and construct a symmetry operator R which
interchanges the a; with the b;. For ¢ = 1, R becomes the operator which interchanges
aj and a;f.

Without loss of generality and to ease the calculations, let us introduce the number
operators N; for j = 1,2, ..., d defined by

Nj:ql_Na;‘aj. 5)

From (1), it follows that sz = N, so N; has eigenvalues 0 and 1 and the total number operator
N can be expressed as

d
N=YN, (©)
j=1
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With a choice like that in (5) and (6) for the number operator N, one can easily show the
following by using the definitive relations for N; as well as the commutation relations defined

by (1):
Nja; =0 ajNj = a;
Cl;ﬁNk = Nka7 ] 75 k
[Nj, N,]=0 N} =N,
N; = (N k=1,2,... (7)
g =1+(q—1N;

ajaj=(1-Npg"  aja;=N;q"
qua;% — qa; a;‘ — a;qN’
where
M;=Ni+Ny+---+N;_1+Nj +---+ Ny )

is an operator with integer eigenvalues.
Before constructing the symmetry operator R interchanging a; and aj, it is worth noting
that for d = 3 and by setting
bi=q'a, ©9)
the following algebraic relations which both a; and b; satisfy are found:
a<bk +bka» = q8‘k
j*_ 171*1_ —17% _ * (10)
ajby = —q biaj =q bjax = —aibj.
Similarly the commutation relations which b; itself satisfies are obtained as follows:
biby +qbib; = ¢* "5
biN = (N + )b} an
biby = —bib;.

If the same procedure is carried out for different values of the dimension d, it provides
that if b} defined by (9) for d = 3 is replaced by

d—1-2N)/2
b = g )/ a; (12)
the structure of the commutation relations can be generalized for any d by

bib; +qbib; = q Vi

biN = (N + )b} (13)
bjbe = —bib;
with
d
> btb;=(d— N)yg* ", (14)
j=1

By a similar procedure, it can easily be shown that the commutation relations between a;
and b; are given by
— ,d=1/2
bia; +agbi =q 8k

15
ajb;: = —q_lb:aj = q_lbjak = —akb;‘-. (1>
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This algebraic structure can then be used to solve the problem of constructing a symmetry
operator, denoted by R, which interchanges the a; with the b;. Such an operator R can be
characterized by

R=R"=R"'
RajR = ¢;jb; (16)
RNR=d—-N
where the operator ¢; is a phase which commutes with b; and turns out to be given by
for d=2k+1 @ =™
itM; . < 4
for d=4k+4  @;={ ", 172
—e M M] 2 3
. 4 d (a7
! s-IsM;<3
for d=4k+2 p; =1 ™M Mj<%—1
—ei”Mf Mj > %

with M as defined in (8). It should be noted that R will depend on the dimension & but not
on the index j of the oscillator creation and annihilation operators a; and a.
The definition above of the symmetry operator R will lead to the following relations:
RN*R = (d — N)*
R(N+k)R=(d+k)—N.
The equations (16) and (18) for the symmetry operator R as well as the creation,

annihilation and ‘inverse’ lowering operators suggest that for a two-dimensional system
R = R(2) can be characterized as

(18)

R(2) = a(aja; + axa)) + Blajaiasa; — a_}‘azalaf) (19)

where the Einstein summation convention over repeated indices holds and the coefficients «
and B are to be determined. .
If the ground state is denoted by | ) and the state |1, 2) by | ), by defining

vl =aial) = ajl2)
one finds that y = ¢!/ by simply calculating y from the following equation:
yIP1) = (laaiafas] ).
In general,
lyI2(1,2,...,d|1,2,....d) = (|agaq_, - - - axaaias - - - a’_ail )
which leads to
y=q"0 (20)
for all dimensions; that is
gV 2, L d) = atal - a)l).
By imposing

R|)~1|)

RI)~1)
and

R|1) ~|2)

R|2) ~ 1)
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it is found that & must be equal to ¢ ~'/? by using the first set whereas the action of R on |1)
and |2) should be modified by phases such that

RI1) = —if2)
R[2) = +i|1)

to determine 8. With this modification R is calculated to be
_ i
R(2)=gq 1/2(afa§ +axay) +q lz(ajaika;aj - a;fazala;f).

It is important to note that complex coefficients only appear when d = 4k + 2, where
k=0,1,2,....
For simplification in the formulation of R, let us define operators A, and By as follows:

d
* * ok * *
Aj(a) =aja;...a; = | |aj
j=1

d
Ad(a) = [A5@] =[] aa—ju

j=1

Aja) =aiay,...af, =]]a; @1
j=1

d
Adla) = (A5 @) =], .,
j=1

Ap(a) =1
By = Ap(a)Ay(a) Ar(ar)
Bf = Af(a) Aa(@) Af(ar).
By repeating similar calculations for different dimensions, the formula for the symmetry
operator can be generalized to obtain
[d/2—1]

! - *
R(d) = S, + kZ(; 7 @-DULR/2 (B 4 By o)
where
: 0 d=2k+1
Sa=1 s@md "V Bap— Bjp) d=4k+2 1. 23)
%(d/l2)!qid(d71)/2(3d/2 +Bj,) d=4k+4

The verification of the properties of R as given by (16) is rather tedious but relatively
straightforward. We would like to recall that we have defined the operators b, b;*. by (12) and
have constructed R so that (16) is valid. In particular this definition implies the existence of
the phases ¢; in (16). Alternatively (16) could be replaced by a similar set of relations with
@; = 1 but then nontrivial phases would be present in (12).

We have shown that the algebra given by (1), (13) and (15) has a symmetry operator
R which can be used to implement the symmetry associated with the reflection a; < b;.
When a classical system is quantized, the preferred method is to choose a scheme where the
symmetries of the system remain unchanged. The d-dimensional bosonic Newton oscillator
and the fermionic Newton oscillator both enjoy the U (d) symmetry of the classical oscillator.
Thus together with the particle—antiparticle interchange symmetry we have shown here, the
resemblance of the d-dimensional fermionic Newton oscillator to the standard d-dimensional
fermionic oscillator becomes manifest. This symmetry will be relevant for physical models
utilizing the fermionic Newton oscillator.
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