Particle-antiparticle symmetry of the multi-dimensional fermionic Newton oscillator

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2001 J. Phys. A: Math. Gen. 34725
(http://iopscience.iop.org/0305-4470/34/4/303)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.98
The article was downloaded on 02/06/2010 at 09:19

Please note that terms and conditions apply.

Particle-antiparticle symmetry of the multi-dimensional fermionic Newton oscillator

M Arik ${ }^{1,2}$ and A Peker-Dobie ${ }^{3}$
${ }^{1}$ Department of Physics, Bogazici University, Bebek, Istanbul, Turkey
${ }^{2}$ Feza Gursey Institute, PK 6, Cengelkoy, Istanbul, Turkey
${ }^{3}$ Department of Mathematics, Istanbul Technical University, Maslak, Istanbul, Turkey

Received 14 August 2000, in final form 4 December 2000

Abstract

We consider the d-dimensional Newton oscillator, which is invariant under the group $U(d)$, and construct a symmetry operator R which corresponds to particle-antiparticle interchange.

PACS numbers: 0365,0220

The development of the quantum inverse method and the study of solutions of the YangBaxter equation are the origin of the concept of quantum groups and algebras [1,2]. It was also found that these new mathematical structures have important applications in exactly solvable statistical models [3] and in two-dimensional conformal field theories [4]. An interesting realization of the quantum algebra $S U_{q}(2)$ in terms of a q-analogue of the usual bosonic harmonic oscillator and the Jordan-Schwinger mapping [5-7] has led naturally to the introduction of a q-deformed fermionic equivalent of the q-deformed bosonic oscillator to construct the oscillator representation of the q-deformed superalgebras [8], quantum exceptional algebras [9] and some q-deformed classical Lie algebras [10].

The multi-dimensional fermionic Newton oscillator is defined by the commutation relations

$$
\begin{align*}
& a_{j} a_{k}^{*}+q a_{k}^{*} a_{j}=q^{N} \delta_{j k} \\
& a_{j} N=(N+1) a_{j} \tag{1}\\
& a_{j} a_{k}+a_{k} a_{j}=0 \\
& j, k=1,2, \ldots, d
\end{align*}
$$

where a_{j}^{*} is the creation operator and a_{j} is the annihilation operator of the i th fermion and N is the total number operator in d dimensions. It enjoys the following properties:
(1) For $q=1$ it reduces to the usual d-dimensional fermion algebra.
(2) The usual fermionic operators a and a^{*} satisfying

$$
\begin{aligned}
& a a^{*}+a^{*} a=1 \\
& {\left[N, a^{*}\right]=a^{*}} \\
& a^{2}=0
\end{aligned}
$$

are equivalent to fermionic q-oscillators satisfying

$$
\begin{aligned}
& a a^{*}+q a^{*} a=q^{N} \\
& {\left[N, a^{*}\right]=a^{*}} \\
& a^{2}=0 .
\end{aligned}
$$

Furthermore, Jing and Xu proved that the well known q-deformed fermionic oscillator given by

$$
\begin{aligned}
& a a^{*}+a^{*} a=q^{N} \\
& a a^{*}+q^{-1} a^{*} a=q^{-N} \\
& a^{2}=a^{2}=0
\end{aligned}
$$

is nothing but the usual fermionic oscillator [11].
Although the fermionic Newton oscillator for $d=1$ is isomorphic [11, 12] to the usual fermionic oscillator, for $d>1$ the 'deformed' total particle operator

$$
\begin{equation*}
\tilde{N}=\sum_{j} a_{j}^{*} a_{j}=N q^{N-1} \tag{2}
\end{equation*}
$$

gives deformed integer eigenvalues.
(3) It is invariant under the $U(d)$ group, which acts on the oscillators through

$$
\begin{equation*}
a_{j} \rightarrow \alpha_{j k} a_{k} \quad a_{j}^{*} \rightarrow \overline{\alpha_{j k}} a_{k}^{*} \tag{3}
\end{equation*}
$$

where $\alpha_{j k}$ is a $d \times d$ unitary matrix. This property, which is also possessed by the d dimensional classical harmonic oscillator, justifies the name Newton. For the bosonic version it can be shown that the deformation can be understood using the quantization of the classical Newton equation [13].
The coherent states for the one-dimensional bosonic Newton oscillator were constructed in [14]. The multi-dimensional bosonic version of this oscillator was derived in [13] using the quantization of the harmonic oscillator through its Newton equation and its invariance properties. A different multi-dimensional fermionic q-oscillator not invariant under $U(d)$ has been considered in [15].

Although the usual d-dimensional fermionic oscillator obeys the (particle-antiparticle) symmetry $a_{j} \leftrightarrow a_{j}^{*}$ and $N \leftrightarrow d-N$, the q-deformed oscillator does not. In this paper we show that the algebra (1) can be extended such that the system has the symmetry

$$
\begin{equation*}
a_{j} \rightarrow b_{j} \quad N \rightarrow d-N \tag{4}
\end{equation*}
$$

where b_{j} are 'inverse' lowering operators, and construct a symmetry operator R which interchanges the a_{j} with the b_{j}. For $q=1, R$ becomes the operator which interchanges a_{j} and a_{j}^{*}.

Without loss of generality and to ease the calculations, let us introduce the number operators N_{j} for $j=1,2, \ldots, d$ defined by

$$
\begin{equation*}
N_{j}=q^{1-N} a_{j}^{*} a_{j} . \tag{5}
\end{equation*}
$$

From (1), it follows that $N_{j}^{2}=N_{j}$ so N_{j} has eigenvalues 0 and 1 and the total number operator N can be expressed as

$$
\begin{equation*}
N=\sum_{j=1}^{d} N_{j} \tag{6}
\end{equation*}
$$

With a choice like that in (5) and (6) for the number operator N_{j}, one can easily show the following by using the definitive relations for N_{j} as well as the commutation relations defined by (1):

$$
\begin{array}{lr}
N_{j} a_{j}=0 & a_{j} N_{j}=a_{j} \\
a_{j}^{*} N_{k}=N_{k} a_{j}^{*} & j \neq k \\
{\left[N_{j}, N_{k}\right]=0} & N_{j}^{*}=N_{j} \\
N_{j}=\left(N_{j}\right)^{k} & k=1,2, \ldots \tag{7}\\
q^{N_{j}}=1+(q-1) N_{j} \\
a_{j} a_{j}^{*}=\left(1-N_{j}\right) q^{M_{j}} \quad a_{j}^{*} a_{j}=N_{j} q^{M_{j}} \\
q^{N_{j}} a_{j}^{*}=q a_{j}^{*} & a_{j}^{*}=a_{j}^{*} q^{N_{j}}
\end{array}
$$

where

$$
\begin{equation*}
M_{j}=N_{1}+N_{2}+\cdots+N_{j-1}+N_{j+1}+\cdots+N_{d} \tag{8}
\end{equation*}
$$

is an operator with integer eigenvalues.
Before constructing the symmetry operator R interchanging a_{j} and a_{j}^{*}, it is worth noting that for $d=3$ and by setting

$$
\begin{equation*}
b_{j}^{*}=q^{1-N} a_{j} \tag{9}
\end{equation*}
$$

the following algebraic relations which both a_{j} and b_{j} satisfy are found:

$$
\begin{align*}
& a_{j} b_{k}+b_{k} a_{j}=q \delta_{j k} \\
& a_{j} b_{k}^{*}=-q^{-1} b_{k}^{*} a_{j}=q^{-1} b_{j}^{*} a_{k}=-a_{k} b_{j}^{*} \tag{10}
\end{align*}
$$

Similarly the commutation relations which b_{j} itself satisfies are obtained as follows:

$$
\begin{align*}
& b_{j} b_{k}^{*}+q b_{k}^{*} b_{j}=q^{3-N} \delta_{j k} \\
& b_{j}^{*} N=(N+1) b_{j}^{*} \tag{11}\\
& b_{j} b_{k}=-b_{k} b_{j} .
\end{align*}
$$

If the same procedure is carried out for different values of the dimension d, it provides that if b_{j}^{*} defined by (9) for $d=3$ is replaced by

$$
\begin{equation*}
b_{j}^{*}=q^{(d-1-2 N) / 2} a_{j} \tag{12}
\end{equation*}
$$

the structure of the commutation relations can be generalized for any d by

$$
\begin{align*}
& b_{j} b_{k}^{*}+q b_{k}^{*} b_{j}=q^{d-N} \delta_{j k} \\
& b_{j}^{*} N=(N+1) b_{j}^{*} \tag{13}\\
& b_{j} b_{k}=-b_{k} b_{j}
\end{align*}
$$

with

$$
\begin{equation*}
\sum_{j=1}^{d} b_{j}^{*} b_{j}=(d-N) q^{d-1-N} \tag{14}
\end{equation*}
$$

By a similar procedure, it can easily be shown that the commutation relations between a_{j} and b_{j} are given by

$$
\begin{align*}
& b_{j}^{*} a_{k}^{*}+a_{k}^{*} b_{j}^{*}=q^{(d-1) / 2} \delta_{j k} \tag{15}\\
& a_{j} b_{k}^{*}=-q^{-1} b_{k}^{*} a_{j}=q^{-1} b_{j}^{*} a_{k}=-a_{k} b_{j}^{*}
\end{align*}
$$

This algebraic structure can then be used to solve the problem of constructing a symmetry operator, denoted by R, which interchanges the a_{j} with the b_{j}. Such an operator R can be characterized by

$$
\begin{align*}
& R=R^{*}=R^{-1} \\
& R a_{j} R=\varphi_{j} b_{j} \tag{16}\\
& R N R=d-N
\end{align*}
$$

where the operator φ_{j} is a phase which commutes with b_{j} and turns out to be given by

$$
\begin{array}{lll}
\text { for } & d=2 k+1 & \varphi_{j}=\mathrm{e}^{\mathrm{i} \pi M_{j}} \\
\text { for } & d=4 k+4 & \varphi_{j}=\left\{\begin{array}{cc}
\mathrm{e}^{\mathrm{i} \pi M_{j}} & M_{j}<\frac{d}{2} \\
-\mathrm{e}^{\mathrm{i} \pi M_{j}} & M_{j} \geqslant \frac{d}{2}
\end{array}\right\} \tag{17}\\
\text { for } & d=4 k+2 & \varphi_{j}=\left\{\begin{array}{cc}
\mathrm{i} & \frac{d}{2}-1 \leqslant M_{j} \leqslant \frac{d}{2} \\
\mathrm{e}^{\mathrm{i} \pi M_{j}} & M_{j}<\frac{d}{2}-1 \\
-\mathrm{e}^{\mathrm{i} \pi M_{j}} & M_{j}>\frac{d}{2}
\end{array}\right\}
\end{array}
$$

with M_{j} as defined in (8). It should be noted that R will depend on the dimension d but not on the index j of the oscillator creation and annihilation operators a_{j} and a_{j}^{*}.

The definition above of the symmetry operator R will lead to the following relations:

$$
\begin{align*}
& R N^{k} R=(d-N)^{k} \tag{18}\\
& R(N+k) R=(d+k)-N
\end{align*}
$$

The equations (16) and (18) for the symmetry operator R as well as the creation, annihilation and 'inverse' lowering operators suggest that for a two-dimensional system $R=R(2)$ can be characterized as

$$
\begin{equation*}
R(2) \equiv \alpha\left(a_{1}^{*} a_{2}^{*}+a_{2} a_{1}\right)+\beta\left(a_{j} a_{1}^{*} a_{2}^{*} a_{j}-a_{j}^{*} a_{2} a_{1} a_{j}^{*}\right) \tag{19}
\end{equation*}
$$

where the Einstein summation convention over repeated indices holds and the coefficients α and β are to be determined.

If the ground state is denoted by \rangle and the state $| 1,2\rangle$ by $|\overline{\mid}\rangle$, by defining

$$
\left.\gamma\left|\overline{\rangle}=a_{1}^{*} a_{2}^{*}\right|\right\rangle=a_{1}^{*}|2\rangle
$$

one finds that $\gamma=q^{1 / 2}$ by simply calculating γ from the following equation:

$$
|\gamma|^{2} \mid \overline{\rangle}=\langle | a_{2} a_{1} a_{1}^{*} a_{2}^{*}| \rangle
$$

In general,

$$
|\gamma|^{2}\langle 1,2, \ldots, d \mid 1,2, \ldots, d\rangle=\langle | a_{d} a_{d-1} \cdots a_{2} a_{1} a_{1}^{*} a_{2}^{*} \cdots a_{d-1}^{*} a_{d}^{*}| \rangle
$$

which leads to

$$
\begin{equation*}
\gamma=q^{d(d-1) / 4} \tag{20}
\end{equation*}
$$

for all dimensions; that is

$$
q^{d(d-1) / 4}|1,2, \ldots, d\rangle=a_{1}^{*} a_{2}^{*} \cdots a_{d}^{*}| \rangle
$$

By imposing

$$
\begin{aligned}
& R\rangle \sim| \overline{ } \\
& R|\overline{\lceil } \sim|\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
R|1\rangle & \sim|2\rangle \\
R|2\rangle & \sim|1\rangle
\end{aligned}
$$

it is found that α must be equal to $q^{-1 / 2}$ by using the first set whereas the action of R on $|1\rangle$ and $|2\rangle$ should be modified by phases such that

$$
\begin{aligned}
& R|1\rangle=-\mathrm{i}|2\rangle \\
& R|2\rangle=+\mathrm{i}|1\rangle
\end{aligned}
$$

to determine β. With this modification R is calculated to be

$$
R(2) \equiv q^{-1 / 2}\left(a_{1}^{*} a_{2}^{*}+a_{2} a_{1}\right)+q^{-1} \frac{\mathrm{i}}{2}\left(a_{j} a_{1}^{*} a_{2}^{*} a_{j}-a_{j}^{*} a_{2} a_{1} a_{j}^{*}\right) .
$$

It is important to note that complex coefficients only appear when $d=4 k+2$, where $k=0,1,2, \ldots$.

For simplification in the formulation of R, let us define operators A_{d} and B_{k} as follows:

$$
\begin{align*}
& A_{d}^{*}(a)=a_{1}^{*} a_{2}^{*} \ldots a_{d}^{*}=\prod_{j=1}^{d} a_{j}^{*} \\
& A_{d}(a)=\left[A_{d}^{*}(a)\right]^{*}=\prod_{j=1}^{d} a_{d-j+1} \\
& A_{d}^{*}\left(a_{l}\right)=a_{l_{1}}^{*} a_{l_{2}}^{*} \ldots a_{l_{d}}^{*}=\prod_{j=1}^{d} a_{l_{j}}^{*} \tag{21}\\
& A_{d}\left(a_{l}\right)=\left[A_{d}^{*}\left(a_{l}\right)\right]^{*}=\prod_{j=1}^{d} a_{l_{d-j+1}} \\
& A_{0}(a)=1 \\
& B_{k}=A_{k}\left(a_{l}\right) A_{d}^{*}(a) A_{k}\left(a_{l}\right) \\
& B_{k}^{*}=A_{k}^{*}\left(a_{l}\right) A_{d}(a) A_{k}^{*}\left(a_{l}\right) .
\end{align*}
$$

By repeating similar calculations for different dimensions, the formula for the symmetry operator can be generalized to obtain

$$
\begin{equation*}
R(d)=S_{d}+\sum_{k=0}^{[d / 2-1]} \frac{1}{k!} q^{-(d-1)(d / 2+k) / 2}\left(B_{k}+B_{k}^{*}\right) \tag{22}
\end{equation*}
$$

where

$$
S_{d}=\left\{\begin{array}{cc}
0 & d=2 k+1 \tag{23}\\
\frac{1}{2} \frac{1}{(d / 2)!} q^{-d(d-1) / 2}\left(B_{d / 2}-B_{d / 2}^{*}\right) & d=4 k+2 \\
\frac{1}{2} \frac{1}{(d / 2)!} q^{-d(d-1) / 2}\left(B_{d / 2}+B_{d / 2}^{*}\right) & d=4 k+4
\end{array}\right\}
$$

The verification of the properties of R as given by (16) is rather tedious but relatively straightforward. We would like to recall that we have defined the operators b_{j}, b_{j}^{*} by (12) and have constructed R so that (16) is valid. In particular this definition implies the existence of the phases φ_{j} in (16). Alternatively (16) could be replaced by a similar set of relations with $\varphi_{j}=1$ but then nontrivial phases would be present in (12).

We have shown that the algebra given by (1), (13) and (15) has a symmetry operator R which can be used to implement the symmetry associated with the reflection $a_{j} \leftrightarrow b_{j}$. When a classical system is quantized, the preferred method is to choose a scheme where the symmetries of the system remain unchanged. The d-dimensional bosonic Newton oscillator and the fermionic Newton oscillator both enjoy the $U(d)$ symmetry of the classical oscillator. Thus together with the particle-antiparticle interchange symmetry we have shown here, the resemblance of the d-dimensional fermionic Newton oscillator to the standard d-dimensional fermionic oscillator becomes manifest. This symmetry will be relevant for physical models utilizing the fermionic Newton oscillator.

References

[1] Drinfeld V G 1986 Quantum groups Proc. Int. Congress of Mathematicians (Berkeley, CA) ed A M Gleason (Providence, RI: American Mathematical Society) p 798
[2] Jimbo M 1986 J. Math. Phys. 11247
[3] de Vega H J 1989 Int. J. Mod. Phys. A 42371
[4] Alvarez-Gaume L, Gomez C and Sierra G 1989 Nucl. Phys. B 319155
[5] Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L873
[6] Macfarlane A J 1989 J. Phys. A: Math. Gen. 224581
[7] Sun C P and Fu H C 1989 J. Phys. A: Math. Gen. 22 L983
[8] Hayashi T 1990 Commun. Math. Phys. 127129
[9] Frappat L, Sorba P and Sciarrino A 1991 J. Phys. A: Math. Gen. 24 L179
[10] Chaichian M and Kulish P P 1990 Phys. Lett. B 23472
[11] Jing S and Xu J 1991 J. Phys. A: Math. Gen. 24 L891
[12] Solomon A and McDermott R 1994 J. Phys. A: Math. Gen. 272619
[13] Arik M, Atakishiyev N M and Wolf K B 1999 J. Phys. A: Math. Gen. 32 L371
[14] Penson K A and Solomon A I 1999 J. Math. Phys. 402354
[15] Chen W Y and Ho C L 1993 J. Phys. A: Math. Gen. 264827

