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Abstract
We consider the d-dimensional Newton oscillator, which is invariant under
the group U(d), and construct a symmetry operator R which corresponds to
particle–antiparticle interchange.

PACS numbers: 0365, 0220

The development of the quantum inverse method and the study of solutions of the Yang–
Baxter equation are the origin of the concept of quantum groups and algebras [1, 2]. It was
also found that these new mathematical structures have important applications in exactly
solvable statistical models [3] and in two-dimensional conformal field theories [4]. An
interesting realization of the quantum algebra SUq(2) in terms of a q-analogue of the usual
bosonic harmonic oscillator and the Jordan–Schwinger mapping [5–7] has led naturally to
the introduction of a q-deformed fermionic equivalent of the q-deformed bosonic oscillator
to construct the oscillator representation of the q-deformed superalgebras [8], quantum
exceptional algebras [9] and some q-deformed classical Lie algebras [10].

The multi-dimensional fermionic Newton oscillator is defined by the commutation
relations

aja
∗
k + qa∗

k aj = qNδjk

ajN = (N + 1)aj

ajak + akaj = 0

j, k = 1, 2, . . . , d

(1)

where a∗
j is the creation operator and aj is the annihilation operator of the ith fermion and N

is the total number operator in d dimensions. It enjoys the following properties:

(1) For q = 1 it reduces to the usual d-dimensional fermion algebra.
(2) The usual fermionic operators a and a∗ satisfying

aa∗ + a∗a = 1

[N, a∗] = a∗

a2 = 0
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are equivalent to fermionic q-oscillators satisfying

aa∗ + qa∗a = qN

[N, a∗] = a∗

a2 = 0.

Furthermore, Jing and Xu proved that the well known q-deformed fermionic oscillator
given by

aa∗ + a∗a = qN

aa∗ + q−1a∗a = q−N

a2 = a2 = 0

is nothing but the usual fermionic oscillator [11].
Although the fermionic Newton oscillator for d = 1 is isomorphic [11, 12] to the usual
fermionic oscillator, for d > 1 the ‘deformed’ total particle operator

Ñ =
∑

j

a∗
j aj = NqN−1 (2)

gives deformed integer eigenvalues.
(3) It is invariant under the U(d) group, which acts on the oscillators through

aj → αjkak a∗
j → ¯αjka

∗
k (3)

where αjk is a d × d unitary matrix. This property, which is also possessed by the d-
dimensional classical harmonic oscillator, justifies the name Newton. For the bosonic
version it can be shown that the deformation can be understood using the quantization of
the classical Newton equation [13].

The coherent states for the one-dimensional bosonic Newton oscillator were constructed
in [14]. The multi-dimensional bosonic version of this oscillator was derived in [13] using
the quantization of the harmonic oscillator through its Newton equation and its invariance
properties. A different multi-dimensional fermionic q-oscillator not invariant under U(d) has
been considered in [15].

Although the usual d-dimensional fermionic oscillator obeys the (particle–antiparticle)
symmetry aj ↔ a∗

j and N ↔ d − N , the q-deformed oscillator does not. In this paper we
show that the algebra (1) can be extended such that the system has the symmetry

aj → bj N → d − N (4)

where bj are ‘inverse’ lowering operators, and construct a symmetry operator R which
interchanges the aj with the bj . For q = 1, R becomes the operator which interchanges
aj and a∗

j .
Without loss of generality and to ease the calculations, let us introduce the number

operators Nj for j = 1, 2, . . . , d defined by

Nj = q1−Na∗
j aj . (5)

From (1), it follows that N2
j = Nj so Nj has eigenvalues 0 and 1 and the total number operator

N can be expressed as

N =
d∑

j=1

Nj . (6)
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With a choice like that in (5) and (6) for the number operator Nj , one can easily show the
following by using the definitive relations for Nj as well as the commutation relations defined
by (1):

Njaj = 0 ajNj = aj

a∗
j Nk = Nka

∗
j j 	= k

[Nj, Nk] = 0 N∗
j = Nj

Nj = (Nj )
k k = 1, 2, . . .

qNj = 1 + (q − 1)Nj

(7)

aja
∗
j = (1 − Nj)q

Mj a∗
j aj = Njq

Mj

qNj a∗
j = qa∗

j a∗
j = a∗

j q
Nj

where

Mj = N1 + N2 + · · · + Nj−1 + Nj+1 + · · · + Nd (8)

is an operator with integer eigenvalues.
Before constructing the symmetry operator R interchanging aj and a∗

j , it is worth noting
that for d = 3 and by setting

b∗
j = q1−Naj (9)

the following algebraic relations which both aj and bj satisfy are found:

ajbk + bkaj = qδjk

ajb
∗
k = −q−1b∗

kaj = q−1b∗
j ak = −akb

∗
j .

(10)

Similarly the commutation relations which bj itself satisfies are obtained as follows:

bjb
∗
k + qb∗

kbj = q3−Nδjk

b∗
jN = (N + 1)b∗

j

bjbk = −bkbj .

(11)

If the same procedure is carried out for different values of the dimension d, it provides
that if b∗

j defined by (9) for d = 3 is replaced by

b∗
j = q(d−1−2N)/2aj (12)

the structure of the commutation relations can be generalized for any d by

bjb
∗
k + qb∗

kbj = qd−Nδjk

b∗
jN = (N + 1)b∗

j

bjbk = −bkbj

(13)

with
d∑

j=1

b∗
j bj = (d − N)qd−1−N. (14)

By a similar procedure, it can easily be shown that the commutation relations between aj

and bj are given by

b∗
j a

∗
k + a∗

k b
∗
j = q(d−1)/2δjk

ajb
∗
k = −q−1b∗

kaj = q−1b∗
j ak = −akb

∗
j .

(15)



728 M Arik and A Peker-Dobie

This algebraic structure can then be used to solve the problem of constructing a symmetry
operator, denoted by R, which interchanges the aj with the bj . Such an operator R can be
characterized by

R = R∗ = R−1

RajR = ϕjbj

RNR = d − N

(16)

where the operator ϕj is a phase which commutes with bj and turns out to be given by

for d = 2k + 1 ϕj = eiπMj

for d = 4k + 4 ϕj =
{

eiπMj Mj < d
2

−eiπMj Mj � d
2

}

for d = 4k + 2 ϕj =



i d
2 − 1 � Mj � d

2
eiπMj Mj < d

2 − 1
−eiπMj Mj > d

2




(17)

with Mj as defined in (8). It should be noted that R will depend on the dimension d but not
on the index j of the oscillator creation and annihilation operators aj and a∗

j .
The definition above of the symmetry operator R will lead to the following relations:

RNkR = (d − N)k

R(N + k)R = (d + k) − N.
(18)

The equations (16) and (18) for the symmetry operator R as well as the creation,
annihilation and ‘inverse’ lowering operators suggest that for a two-dimensional system
R = R(2) can be characterized as

R(2) ≡ α(a∗
1a

∗
2 + a2a1) + β(aja

∗
1a

∗
2aj − a∗

j a2a1a
∗
j ) (19)

where the Einstein summation convention over repeated indices holds and the coefficients α

and β are to be determined.
If the ground state is denoted by | 〉 and the state |1, 2〉 by ¯| 〉, by defining

γ ¯| 〉 = a∗
1a

∗
2 | 〉 = a∗

1 |2〉
one finds that γ = q1/2 by simply calculating γ from the following equation:

|γ |2 ¯| 〉 = 〈 |a2a1a
∗
1a

∗
2 | 〉.

In general,

|γ |2〈1, 2, . . . , d|1, 2, . . . , d〉 = 〈 |adad−1 · · · a2a1a
∗
1a

∗
2 · · · a∗

d−1a
∗
d | 〉

which leads to

γ = qd(d−1)/4 (20)

for all dimensions; that is

qd(d−1)/4|1, 2, . . . , d〉 = a∗
1a

∗
2 · · · a∗

d | 〉.
By imposing

R| 〉 ∼ ¯| 〉
R ¯| 〉 ∼ | 〉

and

R|1〉 ∼ |2〉
R|2〉 ∼ |1〉
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it is found that α must be equal to q−1/2 by using the first set whereas the action of R on |1〉
and |2〉 should be modified by phases such that

R|1〉 = −i|2〉
R|2〉 = +i|1〉

to determine β. With this modification R is calculated to be

R(2) ≡ q−1/2(a∗
1a

∗
2 + a2a1) + q−1 i

2
(aja

∗
1a

∗
2aj − a∗

j a2a1a
∗
j ).

It is important to note that complex coefficients only appear when d = 4k + 2, where
k = 0, 1, 2, . . . .

For simplification in the formulation of R, let us define operators Ad and Bk as follows:

A∗
d(a) = a∗

1a
∗
2 . . . a∗

d =
d∏

j=1

a∗
j

Ad(a) = [A∗
d(a)]∗ =

d∏
j=1

ad−j+1

A∗
d(al) = a∗

l1
a∗

l2
. . . a∗

ld
=

d∏
j=1

a∗
lj

Ad(al) = [A∗
d(al)]

∗ =
d∏

j=1

ald−j+1

A0(a) = 1

Bk = Ak(al)A
∗
d(a)Ak(al)

B∗
k = A∗

k(al)Ad(a)A∗
k(al).

(21)

By repeating similar calculations for different dimensions, the formula for the symmetry
operator can be generalized to obtain

R(d) = Sd +
[d/2−1]∑

k=0

1

k!
q−(d−1)(d/2+k)/2 (Bk + B∗

k ) (22)

where

Sd =



0 d = 2k + 1
i
2

1
(d/2)!q

−d(d−1)/2(Bd/2 − B∗
d/2) d = 4k + 2

1
2

1
(d/2)!q

−d(d−1)/2(Bd/2 + B∗
d/2) d = 4k + 4


 . (23)

The verification of the properties of R as given by (16) is rather tedious but relatively
straightforward. We would like to recall that we have defined the operators bj , b

∗
j by (12) and

have constructed R so that (16) is valid. In particular this definition implies the existence of
the phases ϕj in (16). Alternatively (16) could be replaced by a similar set of relations with
ϕj = 1 but then nontrivial phases would be present in (12).

We have shown that the algebra given by (1), (13) and (15) has a symmetry operator
R which can be used to implement the symmetry associated with the reflection aj ↔ bj .
When a classical system is quantized, the preferred method is to choose a scheme where the
symmetries of the system remain unchanged. The d-dimensional bosonic Newton oscillator
and the fermionic Newton oscillator both enjoy the U(d) symmetry of the classical oscillator.
Thus together with the particle–antiparticle interchange symmetry we have shown here, the
resemblance of the d-dimensional fermionic Newton oscillator to the standard d-dimensional
fermionic oscillator becomes manifest. This symmetry will be relevant for physical models
utilizing the fermionic Newton oscillator.
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